University of Mumbai

Syllabus for

Honours/Minor Degree Program
In

Artificial Intelligence and Machine Learning

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2022-2023)

	University of Mumbai										
	A	rtific		_				_	(AI&ML)		
		Teac	hing Scher / Week		effect fr E				nd Marks	Credit Scheme	
Year & Sem	Course Code &	Theory	Seminar / Tutorial	Practical	Internal Assessment	End Sem Exam	Term Work	Oral	Total	Credits	
TE Sem V	HAIMLC501: Mathematics for AI & ML	04			20	80			100	04	
	Total	04	=.		100	-	-		100	04	
									T	otal Credits = 04	
TE Sem VI	HAIMLC601: Game Theory using AI & ML	04			20	80			100	04	
	Total	04	-	-	100	-	-		100	04	
									T	otal Credits = 04	
BE Sem VII	HAIMLC701: AI&ML in Healthcare	04			20	80			100	04	
	HAIMLSBL701: AI&ML in Healthcare: Lab			04			50	50	100	02	
	Total	04	-	04	10	0	50	50	200	06	
									T	otal Credits = 06	
BE Sem VIII	HAIMLC801: Text, Web and Social Media Analytics	04	-		20	80			100	04	
	Total	04	-	-	100	<u>I</u>	-	-	100	04	
	1	1	1	1			1	1	T	otal Credits = 04	
	То	tal Cr	edits for S	Semest	ers V,VI,	VII &V	'III = 0	4+04+0	6+04 = 18		

	Artificial Intelligence and Machine Learning: Sem V										
Course Course Teaching Scheme (Contact Credits Assigned								ned			
Code	Name		Hours)								
	Theory Practical Tutorial					Practical	Tutorial	Total			
HAIMLC501	Mathematics for AI&ML	04			04			04			

Course	Course				Examination Scheme						
Code	Name	Theory Marks				Exam	Term	Practical	Total		
		Interna	al Assess	ment	End Sem. Exam.	Duration	Work	and Oral			
		Test1	Test2	Avg.							
HAIMLC501	Mathematics for AI&ML	20	20	20	80	03			100		

Co	ourse Prerequisites:						
	oplied Mathematics, Discrete mathematics						
Co	ourse Objectives:						
1	To build an intuitive understanding of Mathematics and relating it to Artificial Intelligence, Machine Learning						
	and Data Science.						
2	To provide a strong foundation for probabilistic and statistical analysis mostly used in varied applications in						
	Engineering.						
3	To focus on exploring the data with the help of graphical representation and drawing conclusions.						
4	To explore optimization and dimensionality reduction techniques.						
Co	ourse Outcomes:						
Af	ter successful completion of the course, the student will be able to:						
1	Use linear algebra concepts to model, solve, and analyze real-world problems.						
2	Apply probability distributions and sampling distributions to various business problems.						
3	Select an appropriate graph representation for the given data.						
4	Apply exploratory data analysis to some real data sets and provide interpretations via relevant visualization						
5	Analyze various optimization techniques.						
6	Describe Dimension Reduction Algorithms						

Module		Tanica	Lluc
No.		Topics	Hrs.
1.0		Linear Algebra	05
	1.1	Vectors and Matrices, Solving Linear equations, The four Fundamental Subspaces,	
		Eigenvalues and Eigen Vectors, The Singular Value Decomposition (SVD).	
2.0		Probability and Statistics	09
	2.1	Introduction, Random Variables and their probability Distribution, Random Sampling,	
		Sample Characteristics and their Distributions, Chi-Square, t-, and F-Distributions: Exact	
		Sampling Distributions, Sampling from a Bivariate Normal Distribution, The Central Limit	
		Theorem.	
3.0		Introduction to Graphs	10

	3.1	Quantitative vs. Qualitative data, Types of Quantitative data: Continuous data, Discrete	
	3.1	data, Types of Qualitative data; Categorical data, Binary data, Ordinary data, Plotting data	
		using Bar graph, Pie chart, Histogram, Stem and Leaf plot, Dot plot, Scatter plot, Time-series	
		graph, Exponential graph, Logarithmic graph, Trigonometric graph, Frequency distribution	
		graph.	
4.0		Exploratory Data Analysis	09
	4.1	Need of exploratory data analysis, cleaning and preparing data, Feature engineering,	
		Missing values, understand dataset through various plots and graphs, draw conclusions,	
		deciding appropriate machine learning models.	
5.0		Optimization Techniques	10
	5.1	Types of optimization-Constrained and Unconstrained optimization, Methods of	
		Optimization-Numerical Optimization, Bracketing Methods-Bisection Method, False	
		Position Method, Newton's Method, Steepest Descent Method, Penalty Function	
		Method.	
6.0		Dimension Reduction Algorithms	05
	6.1	Introduction to Dimension Reduction Algorithms, Linear Dimensionality Reduction:	
		Principal component analysis, Factor Analysis, Linear discriminant analysis.	
	6.2	Non-Linear Dimensionality Reduction: Multidimensional Scaling, Isometric Feature	
		Mapping. Minimal polynomial	
		Total	48

- 1 Linear Algebra for Everyone,
- 2 Gilbert Strang, Wellesley Cambridge Press.
- 3 An Introduction to Probability and Statistics, Vijay Rohatgi, Wiley Publication
- 4 An introduction to Optimization, Second Edition, Wiley-Edwin Chong, Stainslaw Zak.
- 5 Mathematics for Machine Learning, Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Cambridge University Press.
- 6 Exploratory Data Analysis, John Tukey, Princeton University and Bell Laboratories.

References:

- 1 Introduction to Linear Algebra, Gilbert Strang.
- 2 Advanced Engineering Mathematics, Erwin Kreyszig
- 3 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT Press, 2018.
- 4 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014
- 5 Last updated on Sep 9, 2018.
- 6 Mathematics and Programming for Machine Learning with R, William B. Claster, CRC Press, 2020

Useful Links:

- 1 https://math.mit.edu/~gs/linearalgebra/
- 2 https://www.coursera.org/learn/probability-theory-statistics
- 3 https://nptel.ac.in/courses/111/105/111105090/
- 4 https://onlinecourses.nptel.ac.in/noc21_ma01/preview
- 5 https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/

Assessment:

Internal Assessment: (20)

1 Assessment consists of two class tests of 20 marks each.

- 2 The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.
- 3 Duration of each test shall be one hour.

- 1 Question paper will comprise of **total 06** questions, each carrying **20 marks**.
- 2 **Question No: 01** will be **compulsory** and based on the entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4 Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5 **Total 04 questions** need to be solved.

	Artificial Intelligence and Machine Learning: Sem VI									
Course Code	Course Name	Teaching Scheme (Contact Credits Assigned Hours)								
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
HAIMLC601	Game Theory using AI & ML	04			04			04		

Course	Course Name	Examination Scheme							
Code			Theory Mark			Exam	Term	Practical	Total
		Interna	Internal Assessment		End Sem.	Duration	Work	and Oral	
				Exam.					
		Test1	Test2	Avg.					
HAIMLC601	Game Theory using AI & ML	20	20	20	80	03			100

Co	ourse Prerequisites:							
Kn	owledge of probability theory, discrete mathematics, and algorithm design is required.							
Co	ourse Objectives:							
1	To acquire the knowledge of game theory.							
2	To understand the basic concept of AI, strength and weakness of problem solving and search							
3	To study about various heuristic and game search algorithms							
4	To optimize the different linear methods of regression and classification							
5	To interpret the different supervised classification methods of support vector machine.							
6	To acquire the knowledge of different generative models through unsupervised learning							
C	ourse Outcomes:							
Af	ter successful completion of the course, the student will be able to:							
1	Understand basic concept of game theory.							
2	Evaluate Artificial Intelligence (AI) methods and describe their foundations							
3	Analyze and illustrate how search algorithms play vital role in problem solving, inference, perception,							
	knowledge representation and learning							
4	Demonstrate knowledge of reasoning and knowledge representation for solving real world problems							
5	Recognize the characteristics of machine learning that makes it useful to realworld problems and apply							
	different dimensionality reduction techniques							
6	Apply the different supervised learning methods of support vector machine and tree based models							

Module No.		Topics	Hours.
1.0		Introduction to Game Theory	05
	1.1	Introduction, The theory of rational choice, Games with Perfect Information, Nash Equilibrium: Theory, Prisoner's Dilemma, Stag Hunt, Matching pennies, BOS, Multi NE, Cooperative and Competitive Games, Strict and Non Strict NE, Best response functions for NE.	
	1.2	Nash Equilibrium: Illustrations, Cournot's model of oligopoly, Bertrand's model of oligopoly, Electoral competition, The War of Attrition, Auctions, Mixed Strategy Equilibrium, Strategic games in which players may randomize, Dominated actions, Extensive Games with Perfect Information	

2.0		Games with Imperfect Information	09
	2.1	Bayesian Games, Introduction, Motivational examples, General definitions, two	
		examples concerning information, Strictly Competitive Games and Maxminimization,	
		Rationalizability	
	2.2	Evolutionary Equilibrium, Monomorphic pure strategy equilibrium, Mixed strategies	
		and polymorphic equilibrium, Repeated games: The Prisoner's Dilemma, Infinitely	
		repeated games, Strategies, General Results,	
3.0		Introduction to AI & Problem Solving	10
	3.1	Definitions – Foundation and History of AI, Evolution of AI - Applications of AI,	
		Classification of AI systems with respect to environment. Artificial Intelligence vs	
		Machine learning,	
	3.2	Heuristic Search Techniques: Generate-and-Test; Hill Climbing; Properties of A*	
		algorithm, Best first Search; Problem Reduction.	
	3.3	Beyond Classical Search: Local search algorithms and optimization problem, local	
		search in continuous spaces, searching with nondeterministic action and partial	
		observation, online search agent and unknown environments	
4.0		Knowledge and Reasoning	09
	4.1	Knowledge and Reasoning: Building a Knowledge Base: Propositional logic, first order	
		Logic, situation calculus. Theorem Proving in First Order Logic, Planning, partial order	
		planning. Uncertain Knowledge and Reasoning, Probabilities,	
	4.2	Bayesian Networks. Probabilistic reasoning over time: time and uncertainty, hidden	
		Markova models, Kalman filter, dynamic bayesian network, keeping track of many	
		objects	
5.0		Introduction to ML	10
	5.1	Introduction to Machine Learning, Examples of Machine Learning Applications, Learning	
		Types, Supervised Learning -Learning a Class from Examples, Vapnik- Chervonenkis (VC)	
		Dimension, Probably Approximately Correct (PAC) Learning, Noise, Learning Multiple	
		Classes, Regression, Model Selection and Generalization, Dimensions of a Supervised	
		Machine Learning Algorithm	
	5.2	Introduction, Linear Regression Models and Least Squares, Subset Selection, Shrinkage	
		Methods, Logistic Regression Fitting Logistic Regression Models,	
		Quadratic Approximations and Inference, L1 Regularized Logistic Regression,	
		SVM -Introduction to SVM, The Support Vector Classifier, Support Vector Machines and	
		Kernels- Computing the SVM for Classification	
6.0		Unsupervised Learning	05
	6.1	Introduction, Association Rules-Market Basket Analysis, The Apriori Algorithm,	
		Unsupervised as Supervised Learning, Generalized Association Rules, Cluster Analysis	
		Proximity Matrices,	
		Clustering Algorithms-K-mean, Gaussian Mixtures as Soft K-means Clustering, Example:	
		Human Tumor Microarray Data, Vector Quantization, K-medoids, Hierarchical	
		Clustering, Self-Organizing Maps, PCA-Spectral Clustering	
	6.2	Hidden Markov Models-Introduction, Discrete Markov Processes, Hidden Markov	
		Models, Three Basic Problems of HMMs, Evaluation Problem, Finding the State	
		Sequence, Learning Model Parameters, Continuous Observations, The HMM with	
		Input, Model Selection in HMM	
		Total	48

- 1 Martin Osborne, An Introduction to Game Theory, Oxford University Press.
- 2 Russell, S. and Norvig, P. 2015. Artificial Intelligence A Modern Approach, 3rd edition, Prentice Hall
- 3 Introduction to Machine Learning Edition 2, by Ethem Alpaydin

References:

- 1 Thomas Ferguson, Game Theory, World Scientific, 2018.
- 2 Stef Tijs. Introduction to Game Theory, Hindustan Book Agency
- 3 J. Gabriel, Artificial Intelligence: Artificial Intelligence for Humans (Artificial Intelligence, Machine Learning), Create Space Independent Publishing Platform, First edition, 2016
- 4 Introduction to Artificial Intelligence & Expert Systems, Dan W Patterson, PHI.,2010 2. S Kaushik, Artificial Intelligence, Cengage Learning, 1st ed.2011
- 5 Machine Learning. Tom Mitchell. First Edition, McGraw- Hill, 1997

Assessment:

Internal Assessment: (20)

- 1 Assessment consists of two class tests of 20 marks each.
- 2 The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.
- 3 Duration of each test shall be one hour.

- 1 Question paper will comprise of **total 06** questions, each carrying **20 marks**.
- 2 **Question No: 01** will be **compulsory** and based on the entire syllabus wherein 4 to 5 sub-questions will be asked
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4 Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5 **Total 04 questions** need to be solved.

	Artificial Intelligence and Machine Learning: Sem VII										
Course Code	Course Name	Teachir	ng Scheme (Hours)	(Contact	Credits Assigned						
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total			
HAIMLC701	AI&ML in Healthcare	04			04			04			

Course Code	Course	Examination Scheme								
	Name	Theory Marks			Marks		Term	Practical and	Total	
		Internal Assessment			End	Duration	Work	Oral		
		Test1	Test2	Avg.	Sem.					
					Exam.					
HAIMLC701	AI&ML in Healthcare	20	20	20	80	03			100	
		20	20	20	80	US	1		100	

Co	ourse Prerequisites:							
Ar	Artificial Intelligence, Machine Learning							
Co	Course Objectives: The course aims							
1	To understand the need and significance of AI and ML for Healthcare.							
2	To study advanced AI algorithms for Healthcare.							
3	To learn Computational Intelligence techniques .							
4	To understand evaluation metrics and ethics in intelligence for Healthcare systems,							
5	To learn various NLP algorithms and their application in Healthcare,							
6	To investigate the current scope, implications of AI and ML for developing futuristic Healthcare Applications.							
Co	ourse Outcomes:							
Af	ter successful completion of the course, the student will be able to:							
1	Understand the role of AI and ML for handling Healthcare data.							
2	Apply Advanced AI algorithms for Healthcare Problems.							
3	Learn and Apply various Computational Intelligence techniques for Healthcare Application.							
4	Use evaluation metrics for evaluating healthcare systems.							
5	Develop NLP applications for healthcare using various NLP Techniques							
6	Apply AI and ML algorithms for building Healthcare Applications							

Module		Topics	Hours.
1.0		Introduction	04
	1.1	Overview of AI and ML,A Multifaceted Discipline, Applications of AI in Healthcare -	
		Prediction, Diagnosis, personalized treatment and behavior modification, drug	
		discovery, followup care etc,	
	1.2	Realizing potential of AI and ML in healthcare, Healthcare Data - Use Cases.	
2.0		AI, ML, Deep Learning and Data Mining Methods for Healthcare	10
	2.1	Knowledge discovery and Data Mining, ML, Multi classifier Decision Fusion, Ensemble	
		Learning, Meta-Learning and other Abstract Methods.	
	2.2	Evolutionary Algorithms, Illustrative Medical Application-Multiagent Infectious Disease	
		Propagation and Outbreak Prediction, Automated Amblyopia Screening System etc.	
	2.3	Computational Intelligence Techniques, Deep Learning, Unsupervised learning,	
		dimensionality reduction algorithms.	

3.0		Evaluating learning for Intelligence	06
	3.1	Model development and workflow, evaluation metrics, Parameters and Hyperparameters, Hyperparameter tuning algorithms, multivariate testing, Ethics of Intelligence.	
4.0		Natural Language Processing in Healthcare	08
	4.1	NLP tasks in Medicine, Low-level NLP components, High level NLP components, NLP Methods.	
	4.2	Clinical NLP resources and Tools, NLP Applications in Healthcare. Model Interpretability using Explainable AI for NLP applications.	
5.0		Intelligent personal Health Record	04
	5.1	Introduction, Guided Search for Disease Information, Recommending SCA's.	
		Recommending HHP's , Continuous User Monitoring.	
6.0		Future of Healthcare using AI and ML	07
	6.1	Evidence based medicine, Personalized Medicine, Connected Medicine, Digital Health and Therapeutics, Conversational AI, Virtual and Augmented Reality, Blockchain for verifying supply chain, patient record access, Robot - Assisted Surgery, Smart Hospitals, Case Studies on use of AI and ML for Disease Risk Diagnosis from patient data, Augmented reality applications for Junior doctors.	
	6.2	Blockchain for verifying supply chain, patient record access, Robot - Assisted Surgery, Smart Hospitals, Case Studies on use of AI and ML for Disease Risk Diagnosis from patient data, Augmented reality applications for Junior doctors.	
		Total	48

Textbooks:

- 1 Arjun Panesar, "Machine Learning and Al for Healthcare", A Press.
- 2 Arvin Agah, "Medical applications of Artificial Systems", CRC Press

References:

- Erik R. Ranschaert Sergey Morozov Paul R. Algra, "Artificial Intelligence in medical Imaging-Opportunities, Applications and Risks", Springer
- 2 Sergio Consoli Diego Reforgiato Recupero Milan Petković, "Data Science for Healthcare-
 - Methodologies and Applications", Springer
- Dac-Nhuong Le, Chung Van Le, Jolanda G. Tromp, Gia Nhu Nguyen, "Emerging technologies for health and medicine", Wiley.
- Ton J. Cleophas Aeilko H. Zwinderman, "Machine Learning in Medicine- Complete Overview", Springer

Assessment:

Internal Assessment: (20)

- 1 Assessment consists of two class tests of 20 marks each.
- The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.
- 3 Duration of each test shall be one hour.

- 1 Question paper will comprise of **total 06** questions, each carrying **20 marks**.
- 2 **Question No: 01** will be **compulsory** and based on the entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5 **Total 04 questions** need to be solved.

	Artificial Intelligence and Machine Learning: Sem VIII									
Course Code	Course Name	Teach	ing Scheme (Contact	Credits Assigned					
			Hours)							
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
HAIMLC801	Text, Web and									
	Social Media	04			04			04		
	Analytics									

Course Code	Course Name	Examination Scheme								
	Theory		Marks		Exam	Term Work	Practical and	Total		
		Internal Assessment			End			Duration		
		Test1	Test2	Avg.	Sem. Exam.			Oral		
HAIMLC801	Text, Web and Social Media Analytics	20	20	20	80	03			100	

Co	urse Prerequisites:
Ру	thon, Data Mining
Co	urse Objectives: The course aims
1	To have a strong foundation on text, web and social media analytics.
2	To understand the complexities of extracting the text from different data sources and analysing it.
3	To enable students to solve complex real-world problems using sentiment analysis and Recommendation
	systems.
Co	urse Outcomes:
Af	ter successful completion of the course, the student will be able to:
1	Extract Information from the text and perform data pre-processing
2	Apply clustering and classification algorithms on textual data and perform prediction.
3	Apply various web mining techniques to perform mining, searching and spamming of web data.
4	Provide solutions to the emerging problems with social media using behaviour analytics and Recommendation
	systems.
5	Apply machine learning techniques to perform Sentiment Analysis on data from social media.

Module		Topics	Hours.
1.0		Introduction	06
	1.1	Introduction to Text Mining: Introduction, Algorithms for Text Mining, Future Directions	
	1.2	Information Extraction from Text: Named Entity Recognition, Relation Extraction, Unsupervised Information Extraction	
	1.3	Text Representation: tokenization, stemming, stop words, NER, N-gram modelling	
2.0		Clustering and Classification	10

		Total	48
	6.4	Opinion Spam Detection : Supervised Learning, Abnormal Behaviours, Group Spam Detection.	
	6.3	Opinion Lexicon Expansion: Dictionary based, Corpus based	
	6.2	Document Sentiment Classification: Supervised, Unsupervised	
	6.1	The problem of opinion mining,	
6.0		Opinion Mining and Sentiment Analysis:	08
		using Social Context, Evaluating recommendations.	
	5.2	Mining Social Media: Influence and Homophily, Behaviour Analytics, Recommendation in Social Media: Challenges, Classical recommendation Algorithms, Recommendation	
	5.1	Introduction, Challenges, Types of social Network Graphs	
5.0		Social Media Mining:	05
		Prediction based on Web User Transactions.	
		and Visitor Analysis, Cluster Analysis and Visitor segmentation, Association and Correlation Analysis, Analysis of Sequential and Navigational Patterns, Classification and	
	4.1	Data Collection and Pre-processing, Sources and types of Data, Data Modelling, Session	
4.0		Web Usage Mining:	05
	3.3	Web Spamming: Content Spamming, Link Spamming, hiding Techniques, and Combating Spam	
	3.2	Meta Search: Using Similarity Scores, Rank Positons	
		Indexing, Web Search,	
	3.1	Introduction to Web-Mining: Inverted indices and Compression, Latent Semantic	
3.0		Web-Mining:	05
		Conditional Random Fields	
	2.3	Text Modelling: Bayesian Networks, Hidden Markovian Models, Markov random Fields,	
	2.2	Text Classification : Feature Selection, Decision tree Classifiers, Rule-based Classifiers, Probabilistic based Classifiers, Proximity based Classifiers.	
		Clustering	
	2.1	Text Clustering : Feature Selection and Transformation Methods, distance based Clustering Algorithms, Word and Phrase based Clustering, Probabilistic document	

Textbooks:

- 1 Daniel Jurafsky and James H. Martin, "Speech and Language Processing," 3rd edition, 2020
- 2 Charu. C. Aggarwal, Cheng Xiang Zhai, Mining Text Data, Springer Science and Business Media, 2012.
- 3 BingLiu, "Web Data Mining-Exploring Hyperlinks, Contents, and Usage Data", Springer, Second Edition, 2011.

4 Reza Zafarani, Mohammad Ali Abbasiand Huan Liu, "Social Media Mining- An Introduction", Cambridge University Press, 2014

Assessment:

Internal Assessment: (20)

- 1 Assessment consists of two class tests of 20 marks each.
- 2 The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.
- 3 Duration of each test shall be one hour.

- 1 Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2 Question No: 01 will be compulsory and based on the entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4 Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5 **Total 04 questions** need to be solved.

	Artificial Intelligence and Machine Learning:Sem VII								
Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
		Theory	heory Practical Tutorial Ti		Theory	Practical	Tutorial	Total	
HAIMLSBL701	AI&ML in Healthcare: Lab		04			02		02	

Course Code	Course Name	Examination Scheme							
		Theory Marks				Exam	Term	Oral	Total
		Internal Assessment			End	Duration	Work		
		Test1	Test2	Avg.	Sem.				
					Exam.				
HAIMLSBL701	AI&ML in						50	50	100
	Healthcare: Lab						30	30	100

Co	ourse Prerequisites:
Ру	rthon
Co	ourse Outcomes:
Af	ter successful completion of the course, the student will be able to:
1	Students will be able to understand computational models of AI and ML.
2	Students will be able to develop healthcare applications using appropriate computational tools.
3	Students will be able to apply appropriate models to solve specific healthcare problems.
4	Students will be able to analyze and justify the performance of specific models as applied to healthcare
	problems.
5	Students will be able to design and implement AI and ML-based healthcare applications.

Sugges	ted Experiments:
Sr. No.	Name of the Experiment
1	Collect, Clean, Integrate and Transform Healthcare Data based on specific disease.
2	Perform Exploratory data analysis of Healthcare Data.
3	Al for medical diagnosis based on MRI/X-ray data.
4	Al for medical prognosis .
5	Natural language Entity Extraction from medical reports.
6	Predict disease risk from Patient data.
7	Medical Reviews Analysis from social media data.
8	Explainable AI in healthcare for model interpretation.
9	Mini Project-Design and implement innovative web/mobile based AI application using Healthcare Data.
10	Documentation and Presentation of Mini Project.

Useful Links:

- 1 https://www.coursera.org/learn/introduction-tensorflow?specialization=tensorflow-in-practice
- 2 https://www.coursera.org/learn/convolutional-neural-networks-tensorflow?specialization=tensorflow-in-practice
- 3 https://datarade.ai/data-categories/electronic-health-record-ehr-data
- 4 https://www.cms.gov/Medicare/E-Health/EHealthRecords
- 5 https://www.coursera.org/learn/tensorflow-sequences-time-series-and-prediction?specialization=tensorflow-in-practice

Term Work:

- 1 Term work should consist of 8 experiments and a Mini Project.
- 2 The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.
- 3 Total 25 Marks (Experiments: 10-Marks, Mini Project-10 Marks, Attendance Theory & Practical: 05-marks)

Oral & Practical exam

1 Based on the entire syllabus of AI ML for Healthcare

University of Mumbai

Syllabus for

Honours/Minor Degree Program

In

Data Science

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2022-2023)

	University of Mumbai										
					Data Sc	ience					
			(V	Vith e	ffect fr	om 20	22-2 3	3)			
	oX	Teaching Scheme Hrs / Week			E	xamina	Credit Scheme				
Year & Sem	Course Code &	Theory	Seminar / Tutorial	Practical	Internal Assessment	End Sem Exam	Term Work	Oral	Total	Credits	
TE Sem V	HDSC501: Mathematics for Data Science	04			20	80			100	04	
	Total	04	-		100	-	-	-	100	04	
									Т	otal Credits = 04	
TE Sem VI	HDSC601: Statistical Learning for Data Science	04			20	80			100	04	
	Total	04	-	-	100	-	-	-	100	04	
	1					I			Т	otal Credits = 04	
BE Sem VII	HDSC701: Data Science for Health and Social Care	04			20	80			100	04	
	HDSSBL701: Data Science for Health and Social Care: Lab			04			50	50	100	02	
										06	
	Total	04	-	04	10	0	50	50	200 T	06 Total Credits = 06	
		04	-	04	10	0	50	50	l .		
BE Sem VIII		04	-		20	80	50	50	l .		
Sem	HDSC801: Text, Web and Social Media								Т	otal Credits = 06	
Sem	HDSC801: Text, Web and Social Media Analytics	04	-		20				100 100	otal Credits = 06	
Sem	HDSC801: Text, Web and Social Media Analytics	04	-		20				100 100	04 04	

	Data Science: Sem V									
Course Code	Course Name	Teachin	ng Scheme (Hours)	Contact		Cı	redits Assig	gned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
HDSC501	Mathematics for Data Science	04			04			04		

Course	Course		Examination Scheme								
Code	Name		Theory Marks			Exam	Term	Practical	Total		
		Interna	Internal Assessment		nternal Assessment End			Duration	Work	and	
		Test1	Test2	Avg.	Sem.			Oral			
					Exam.						
HDSC501	Mathematics for Data Science	20	20	20	80	03			100		

Course Prerequisites: 1 | Applied Mathematics, Discrete Mathematics **Course Objectives:** 1 To build an intuitive understanding of Mathematics and relating it to Data Analytics. 2 To provide a strong foundation for probabilistic and statistical analysis mostly used in varied applications in Engineering. 3 To focus on exploring the data with the help of graphical representation and drawing conclusions. 4 To explore optimization and dimensionality reduction techniques. **Course Outcomes:** After successful completion of the course, the student will be able to: 1 Use linear algebra concepts to model, solve, and analyze real-world problems. 2 Apply probability distributions and sampling distributions to various business problems. 3 | Select an appropriate graph representation for the given data analysis. 4 | Apply exploratory data analysis to some real data sets and provide interpretations via relevant visualization 5 | Analyze various optimization techniques for data analysis. Describe Dimension Reduction Algorithms in analytics

Module		Topics	Hours.
1.0		Linear Algebra	05
	1.1	Vectors and Matrices, Solving Linear equations, The four Fundamental Subspaces,	
		Eigenvalues and Eigen Vectors, The Singular Value Decomposition (SVD).	
2.0		Probability and Statistics	09
	2.1	Introduction, Random Variables and their probability Distribution, Random Sampling,	
		Sample Characteristics and their Distributions, Chi-Square, t-, and F-Distributions: Exact	
		Sampling Distributions, Sampling from a Bivariate Normal Distribution, The Central	
		Limit Theorem.	
3.0		Introduction to Graphs	10
	3.1	Quantitative vs. Qualitative data, Types of Quantitative data: Continuous data, Discrete	
		data, Types of Qualitative data: Categorical data, Binary data, Ordinary data, Plotting	

		data using Bar graph, Pie chart, Histogram, Stem and Leaf plot, Dot plot, Scatter plot,	
		Time-series graph, Exponential graph, Logarithmic graph, Trigonometric graph,	
		Frequency distribution graph.	
4.0		Exploratory Data Analysis	09
	4.1	Need of exploratory data analysis, cleaning and preparing data, Feature engineering,	
		Missing values, understand dataset through various plots and graphs, draw	
		conclusions, deciding appropriate machine learning models.	
5.0		Optimization Techniques	10
	5.1	Types of optimization-Constrained and Unconstrained optimization, Methods of	
		Optimization-Numerical Optimization, Bracketing Methods-Bisection Method, False	
		Position Method, Newton's Method, Steepest Descent Method, Penalty Function	
		Method.	
6.0		Dimension Reduction Algorithms	05
	6.1	Introduction to Dimension Reduction Algorithms, Linear Dimensionality Reduction:	
		Principal component analysis, Factor Analysis, Linear discriminant analysis.	
	6.2	Non-Linear Dimensionality Reduction: Multidimensional Scaling, Isometric Feature	
		Mapping. Minimal polynomial	
		Total	48

- 1 Linear Algebra for Everyone,
- 2 Gilbert Strang, Wellesley Cambridge Press.
- 3 An Introduction to Probability and Statistics, Vijay Rohatgi, Wiley Publication
- 4 An introduction to Optimization, Second Edition, Wiley-Edwin Chong, Stainslaw Zak.
- 5 Mathematics for Machine Learning, Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Cambridge University Press.
- 6 Exploratory Data Analysis, John Tukey, Princeton University and Bell Laboratories.

References:

- 1 Introduction to Linear Algebra, Gilbert Strang.
- 2 Advanced Engineering Mathematics, Erwin Kreyszig
- 3 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT Press, 2018.
- 4 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014
- 5 Last updated on Sep 9, 2018.
- 6 Mathematics and Programming for Machine Learning with R, William B. Claster, CRC Press, 2020

Useful Links:

- 1 https://math.mit.edu/~gs/linearalgebra/
- 2 https://www.coursera.org/learn/probability-theory-statistics
- 3 https://nptel.ac.in/courses/111/105/111105090/
- 4 https://onlinecourses.nptel.ac.in/noc21 ma01/preview
- 5 https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/

Assessment:

Internal Assessment: (20)

- 1 Assessment consists of two class tests of 20 marks each.
- 2 The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.

3 Duration of each test shall be one hour.

- 1 Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2 **Question No: 01** will be **compulsory** and based on the entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4 Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5 **Total 04 questions** need to be solved.

	Data Science: Sem VI										
Course Code	Course Name	Teachir	ng Scheme (Hours)	Contact	Credits Assigned						
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total			
HDSC601	Statistical Learning for Data Science	04			04			04			

Course	Course Name				Exa	Examination Scheme					
Code		Theory Marks				Exam	Term	Practical	Total		
		Internal Assessment			End	Duration	Work	and Oral			
		Test1	Test2	Avg.	Sem.						
					Exam.						
HDSC601	Statistical Learning	20	20	20	80	03	-		100		
	for Data Science	20	20	20	80	03	11		100		

Co	ourse Prerequisites:
1	Engineering Mathematics, Probability and Statistics
Co	ourse Objectives:
1	To understand basic statistical foundations for roles of Data Scientist.
2	To develop problem-solving skills.
3	To infer about the population parameters using sample data and perform hypothesis testing.
4	To understand importance and techniques of predicting a relationship between data and determine
	the goodness of model fit.
Co	ourse Outcomes:
Af	ter successful completion of the course, the student will be able to:
1	Develop various visualizations of the data in hand.
2	Analyze a real-world problem and solve it with the knowledge gained from sampling and probability
	distributions.
3	Analyze large data sets and perform data analysis to extract meaningful insights.
4	Develop and test a hypothesis about the population parameters to draw meaningful conclusions.
5	Fit a regression model to data and use it for prediction.

Module No.		Topics	Hours.
1.0		Introduction	08
	1.1	Data and Statistics: Elements, Variables, and Observations, Scales of Measurement, Categorical and Quantitative Data, Cross-Sectional and Time Series Data, Descriptive Statistics, Statistical Inference, Descriptive Statistics: Tabular and Graphical Summarizing Categorical Data, Summarizing Quantitative Data, Cross Tabulations and Scatter Diagram.	
	1.2	Descriptive Statistics: Numerical Measures : Measures of Location, Measures of Variability, Measures of Distribution Shape, Relative Location, and Detecting Outliers, Box Plot, Measures of Association Between Two Variables	

2.0		Probability	08
	2.1	Probability: Experiments, Counting Rules, and Assigning Probabilities, Events and Their Probabilities, Complement of an Event, Addition Law	
		Independent Events, Multiplication Law, Baye's theorem	
	2.2	Discrete Probability Distributions	
		Random Variables, Discrete Probability Distributions, Expected Value and	
		Variance, Binomial Probability Distribution, Poisson Probability Distribution	
	2.3	Continuous Probability Distributions: Uniform Probability Distribution, Normal	
		Curve, Standard Normal Probability Distribution, Computing Probabilities for	
		Any Normal Probability Distribution	
3.0		Sampling and Sampling Distributions	05
	3.1	Sampling from a Finite Population, Sampling from an Infinite Population, Other	
		Sampling Methods, Stratified Random Sampling, Cluster Sampling, Systematic	
		Sampling, Convenience Sampling, Judgment Sampling	
	3.2	Interval Estimation: Population Mean: Known, Population Mean: Unknown,	
		Determining the Sample Size, Population Proportion	
4.0		Hypothesis Tests	05
	4.1	Developing Null and Alternative Hypotheses, Type I and Type II Errors,	
		Population Mean: Known Population Mean: Unknown Inference About Means	
		and Proportions with Two Populations-Inferences About Population Variances,	
		Inferences About a Population Variance, Inferences About Two Population	
		Variances	
	4.2	Tests of Goodness of Fit and Independence, Goodness of Fit Test: A Multinomial	
		Population, Test of Independence	
5.0		Regression	08
	5.1	Simple Linear Regression: Simple Linear Regression Model, Regression Model	
		and Regression Equation, Estimated Regression Equation, Least Squares	
		Method, Coefficient of Determination, Correlation Coefficient, Model	
		Assumptions, testing for Significance, Using the Estimated Regression Equation	
		for Estimation and Prediction Residual Analysis: Validating Model Assumptions,	
		Residual Analysis: Outliers and Influential Observations	
	5.2	Multiple Regression: Multiple Regression Model, Least Squares Method,	
		Multiple Coefficient of Determination, Model Assumptions, Testing for	
		Significance, Categorical Independent Variables, Residual Analysis	
6.0		Time Series Analysis and Forecasting	05
	6.1	Time Series Patterns, Forecast Accuracy, Moving Averages and Exponential	
		Smoothing, Trend Projection, Seasonality and Trend and Time Series	
		Decomposition	
	6.2	Nonparametric Methods	
		Sign Test, Wilcoxon Signed-Rank Test, Mann-Whitney-Wilcoxon Test, Kruskal-	
		Wallis Test, Rank Correlation	
		Total	48

- 1 https://static1.squarespace.com/static/5ff2adbe3fe4fe33db902812/t/6009dd9fa7bc363aa822d2c7/ 1611259312432/ISLR+Seventh+Printing.pdf
- 2 Data Science from Scratch, FIRST PRINCIPLES WITH PYTHON, O'Reilly, Joel Grus,
- 3 Data Science from Scratch (oreillystatic.com)
- 4 Practical Time Series Analysis, Prediction with statistics and Machine Learning, O'Reilly, Aileen Nielsen [DOWNLOAD] O'Reilly Practical Time Series Analysis PDF (lunaticai.com)
- 5 R for data science: Import, Tidy, Transform, Visualize, And Model Data, O'Reilly, Garrett Grolemund, Hadley Wickham
- 6 Python for Data Analysis, 2nd Edition, O'Reilly Media, Wes McKinney.
- 7 https://static1.squarespace.com/static/5ff2adbe3fe4fe33db902812/t/6009dd9fa7bc363aa822d2c7/1611259312432/ISLR+Seventh+Printing.pdf

References:

- 1 Data Science for Dummies Paperback, Wiley Publications, Lillian Pierson
- 2 Storytelling with Data: A Data Visualization, Guide for Business Professionals, Wiley Publications, Cole Nussbaumer Knaflic
- 3 Probability and Statistics for Engineering and the Sciences, Cengage Publications Jay L. Devore.

Assessment:

Internal Assessment: (20)

- 1 Assessment consists of two class tests of 20 marks each.
- 2 The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.
- 3 Duration of each test shall be one hour.

- 1 Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2 **Question No: 01** will be **compulsory** and based on the entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4 Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5 **Total 04 questions** need to be solved.

	Data Science: Sem VII									
Course Code	Course Name	Teaching Scheme (Contact Hours)				Credits /	Assigned			
		Theory	Pract ical	Tutorial	Theory	Practical	Tutorial	Total		
HDSC701	Data Science for Health and Social Care	04			04			04		

Course	Course Name	Examination Scheme							
Code		Theory Marks			ks	Exam	Term	Oral	Total
		Internal Assessment			End Sem.	Duration	Work		
		Test1	Test2	Avg.	Exam.				
HDSC701	Data Science for Health and Social Care	20	20	20	80	03			100

Со	urse Prerequisites:						
Ar	tificial Intelligence, Machine Learning						
Со	urse Objectives: The course aims						
1	To gain perspective of Data Science for Health and Social Care.						
2	To understand different techniques of Biomedical Image Analysis.						
3	To learn NLP techniques for processing Clinical text.						
4	To understand the role of social media analytics for Healthcare data .						
5	To learn advanced analytics techniques for Healthcare Data.						
6	To investigate the current scope, potential, limitations, and implications of data science and its applications for						
	healthcare.						
Со	urse Outcomes:						
Af	ter successful completion of the course, the student will be able to:						
1	Identify sources and structure of healthcare data.						
2	Apply structured lifecycle approach for handling Healthcare data science projects.						
3	Analyze the data, create models, and identify insights from Healthcare data.						
4	Apply various data analysis and visualization techniques for Healthcare and social media data.						
5	Apply various algorithms and develop models for Healthcare data science projects.						
6	To Provide data science solutions for solving problems of Health and Social Care.						

Module		Topics	Hours.
1.0		Data Science for Healthcare	05
	1.1	Introduction, Healthcare Data Sources and Data Analytics for Healthcare, Applications	
		and Practical Systems for Healthcare.	
	1.2	Electronic Health Records(EHR), Components of EHR, Benefits of EHR, Barriers to	
		Adopting EHR, Challenges of using EHR data, Phenotyping Algorithms	
2.0		Biomedical Image Analysis	06
	2.1	Biomedical Imaging Modalities, Object detection ,Image segmentation, Image	
		Registration, Feature Extraction	
	2.2	Mining of Sensor data in Healthcare, Challenges in Healthcare Data Analysis	
	2.3	Biomedical Signal Analysis, Genomic Data Analysis for Personalized Medicine.	
3.0		Data Science and Natural Language Processing for Clinical Text	06

2.1	NLD Mining information from Clinical Toyt Information Extraction Bulg Based	
3.1		
	Approaches, Pattern based algorithms, Machine Learning Algorithms.	
3.2	Clinical Text Corpora and evaluation metrics, challenges in processing clinical reports,	
	Clinical Applications.	
	Social Media Analytics for Healthcare	06
4.1	Social Media analysis for detection and tracking of Infectious Disease outbreaks.	
4.2	Outbreak detection, Social Media Analysis for Public Health Research, Analysis of Social	
	Media Use in Healthcare.	
	Advanced Data Analytics for Healthcare	08
5.1	Review of Clinical Prediction Models, Temporal Data Mining for Healthcare Data	
5.2	Visual Analytics for Healthcare Data, Information Retrieval for Healthcare- Data	
	Publishing Methods in Healthcare.	
	Data Science Practical Systems for Healthcare	08
6.1	Data Analytics for Pervasive Health, Fraud Detection in Healthcare	
6.2	Data Analytics for Pharmaceutical discoveries, Clinical Decision Support Systems	
6.3	Computer-Assisted Medical Image Analysis Systems- Mobile Imaging and Analytics for	
	Biomedical Data.	
	Total	48
	4.1 4.2 5.1 5.2 6.1 6.2	Approaches, Pattern based algorithms, Machine Learning Algorithms. 3.2 Clinical Text Corpora and evaluation metrics, challenges in processing clinical reports, Clinical Applications. Social Media Analytics for Healthcare 4.1 Social Media analysis for detection and tracking of Infectious Disease outbreaks. 4.2 Outbreak detection, Social Media Analysis for Public Health Research, Analysis of Social Media Use in Healthcare. Advanced Data Analytics for Healthcare 5.1 Review of Clinical Prediction Models, Temporal Data Mining for Healthcare Data 5.2 Visual Analytics for Healthcare Data, Information Retrieval for Healthcare-Data Publishing Methods in Healthcare. Data Science Practical Systems for Healthcare 6.1 Data Analytics for Pervasive Health, Fraud Detection in Healthcare 6.2 Data Analytics for Pharmaceutical discoveries, Clinical Decision Support Systems 6.3 Computer-Assisted Medical Image Analysis Systems- Mobile Imaging and Analytics for Biomedical Data.

Textbooks:

- 1 Chandan K. Reddy and Charu C Aggarwal, "Healthcare data analytics", Taylor & Francis, 2015.
- Hui Yang and Eva K. Lee, "Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, Wiley, 2016.

References:

- 1 Madsen, L. B. (2015). Data-driven healthcare: how analytics and BI are transforming the industry. Wiley India Private Limited
- Strome, T. L., & Liefer, A. (2013). Healthcare analytics for quality and performance improvement. Hoboken, NJ, USA: Wiley
- McNeill, D., & Davenport, T. H. (2013). Analytics in Healthcare and the Life Sciences: Strategies, Implementation Methods, and Best Practices. Pearson Education.
- 4 Rachel Schutt and Cathy O'Neil, "Doing Data Science", O'Reilly Media
- Joel Grus, Data Science from Scratch: First Principles with Python, O'Reilly Media
- 6 EMC Education Services," Data Science and Big Data Analytics", Wiley

Assessment:

Internal Assessment: (20)

- 1 Assessment consists of two class tests of 20 marks each.
- The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.
- 3 Duration of each test shall be one hour.

- 1 Question paper will comprise of **total 06** questions, each carrying **20 marks**.
- Question No: 01 will be compulsory and based on the entire syllabus wherein 4 to 5 subquestions will be asked.
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5 **Total 04 questions** need to be solved.

	Data Science: Sem VIII								
Course	Course Name	Teaching	Scheme (Cor	ntact Hours)	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
HDSC801	Text, Web and Social Media Analytics	04			04			04	

Course	Course Name		Examination Scheme								
Code			Theory Marks			Exam	Term	Practical	Total		
		Internal Assessment			End	Duration	Work	and			
		Test1	Test2	Avg.	Sem.			Oral			
					Exam.						
HDSC801	Text, Web and Social Media Analytics	20	20	20	80	03			100		

Co	ourse Prerequisites:							
Ру	rthon, Data Mining							
Co	ourse Objectives: The course aims							
1	To have a strong foundation on text, web and social media analytics.							
2	To understand the complexities of extracting the text from different data sources and analysing it.							
3	To enable students to solve complex real-world problems using sentiment analysis and Recommendation							
	systems.							
Co	ourse Outcomes:							
At	fter successful completion of the course, the student will be able to:							
1	Extract Information from the text and perform data pre-processing							
2	Apply clustering and classification algorithms on textual data and perform prediction.							
3	Apply various web mining techniques to perform mining, searching and spamming of web data.							
4	Provide solutions to the emerging problems with social media using behaviour analytics and							
	Recommendation systems.							
5	Apply machine learning techniques to perform Sentiment Analysis on data from social media.							

Module No.		Topics	Hours.
1.0		Introduction	06
	1.1	Introduction to Text Mining: Introduction, Algorithms for Text Mining, Future Directions	
	1.2	Information Extraction from Text: Named Entity Recognition, Relation Extraction, Unsupervised Information Extraction	
	1.3	Text Representation: tokenization, stemming, stop words, NER, N-gram modelling	
2.0		Clustering and Classification	10

	2.1	Text Clustering: Feature Selection and Transformation Methods, distance based	
		Clustering Algorithms, Word and Phrase based Clustering, Probabilistic document Clustering	
	2.2	Text Classification : Feature Selection, Decision tree Classifiers, Rule-based Classifiers,	
		Probabilistic based Classifiers, Proximity based Classifiers.	
	2.3	Text Modelling: Bayesian Networks, Hidden Markovian Models, Markov random Fields, Conditional Random Fields	
3.0		Web-Mining:	05
	3.1	Introduction to Web-Mining: Inverted indices and Compression, Latent Semantic	
		Indexing, Web Search,	
	3.2	Meta Search: Using Similarity Scores, Rank Positons	
	3.3	Web Spamming: Content Spamming, Link Spamming, hiding Techniques, and	
		Combating Spam	
4.0		Web Usage Mining:	05
	4.1	Data Collection and Pre-processing, Sources and types of Data, Data Modelling,	
		Session and Visitor Analysis, Cluster Analysis and Visitor segmentation, Association	
		and Correlation Analysis, Analysis of Sequential and Navigational Patterns,	
		Classification and Prediction based on Web User Transactions.	
5.0		Social Media Mining:	05
	5.1	Introduction, Challenges, Types of social Network Graphs	
	5.2	Mining Social Media: Influence and Homophily, Behaviour Analytics,	
		Recommendation in Social Media: Challenges, Classical recommendation Algorithms,	
		Recommendation using Social Context, Evaluating recommendations.	
6.0		Opinion Mining and Sentiment Analysis:	08
	6.1	The problem of opinion mining,	
	6.2	Document Sentiment Classification: Supervised, Unsupervised	
	6.3	Opinion Lexicon Expansion: Dictionary based, Corpus based	
	6.4	Opinion Spam Detection : Supervised Learning, Abnormal Behaviours, Group Spam Detection.	

Textbooks:

- 1 Daniel Jurafsky and James H. Martin, "Speech and Language Processing," 3rd edition, 2020
- 2 Charu. C. Aggarwal, Cheng Xiang Zhai, Mining Text Data, Springer Science and Business Media, 2012.
- 3 BingLiu, "Web Data Mining-Exploring Hyperlinks, Contents, and Usage Data", Springer, Second Edition, 2011.

4 Reza Zafarani, Mohammad Ali Abbasiand Huan Liu, "Social Media Mining- An Introduction", Cambridge University Press, 2014

Assessment:

Internal Assessment: (20)

- 1 Assessment consists of two class tests of 20 marks each.
- 2 The first-class test is to be conducted when approx. 40% syllabus is completed and second-class test when additional 40% syllabus is completed.
- 3 Duration of each test shall be one hour.

- 1 Question paper will comprise of **total 06** questions, each carrying **20 marks**.
- 2 **Question No: 01** will be **compulsory** and based on the entire syllabus wherein 4 to 5 sub-questions will be asked.
- 3 Remaining questions will be mixed in nature and randomly selected from all the modules.
- 4 Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5 **Total 04 questions** need to be solved.

	Data Science: Sem VII								
Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
HDSSBL701	Data Science for Health and Social Care: Lab		04			02		02	

Course Code	Course Name	Examination Scheme							
			Theory Marks				Term	Oral	Total
		Interna	Internal Assessment End			Duration	Work		
		Test1	Test2	Avg.	Sem.				
					Exam.				
HDSSBL701	Data Science for								
	Health and Social						50	50	100
	Care: Lab								

Co	ourse Prerequisites:
Ру	rthon
Co	ourse Outcomes:
Af	ter successful completion of the course, the student will be able to:
1	Students will be able to, Identify sources of data, suggest methods for collecting, sharing and analyzing
	Healthcare data.
2	Students will be able to Clean, integrate and transform healthcare data.
3	Students will be able to apply various data analysis and visualization techniques
	on healthcare data.
4	Students will be able to apply various algorithms and develop models for healthcare data Analytics.
5	Students will be able to implement data science solutions for solving healthcare problems.

Sugge	ested Experiments:
Sr. No.	Name of the Experiment
	Introduction
1	Clean, Integrate and Transform Electronic Healthcare Records.
2	Apply various data analysis and visualization techniques on EHR.
3	Bio Medical Image Preprocessing, Segmentation.
4	Bio Medical Image Analytics.
5	Text Analytics for Clinical Text Data.
6	Diagnose disease risk from Patient data.
7	Social Media Analytics for outbreak prediction/ Drug review analytics.
8	Visual Analytics for Healthcare Data.

9	Implement an innovative Data Science application based on Healthcare Data.
10	Documentation and Presentation of Mini Project.

Useful Links:

- 1 http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning
- 2 http://www.cse.wustl.edu/~kilian/cse517a2010/
- 3 https://datarade.ai/data-categories/electronic-health-record-ehr-data
- 4 https://www.cms.gov/Medicare/E-Health/EHealthRecords
- 5 https://onlinecourses.nptel.ac.in/noc20 ee40

Term Work:

- 1 Term work should consist of 8 experiments and a Mini Project.
- 2 The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.
- 3 Total 25 Marks (Experiments: 10-Marks, Mini Project-10 Marks, Attendance Theory & Practical: 05-marks)

Oral & Practical exam

1 Based on the entire syllabus of AI ML for Healthcare

University of Mumbai

Syllabus

Honours/Minor Degree Program

In

Internet of Things

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2022-2023

University of Mumbai Internet of Things (With effect from 2022-23)

			Teaching							Credit
Year &	Course Code and		e Hours/V	Veek	Exami	ination S	Scheme a	nd Mark	(S	Scheme
Sem	Course Title	Theory	Seminar/ Tutorial	Pract	Internal Assess ment	End Sem Exam	Term Work	Oral/ Pract	Total	Credits
TE Sem	HIoTC501: IoT Sensor Technologies	04			20	80			100	04
V	Total	04	-		100)	-	-	100	04
								Tota	l Credits	= 04
TE	T T									
TE Sem.	HIoTC601: IoT System Design	04			20	80			100	04
VI	Total	04	-	-	100		-	-	100	04
								Tota	Credits =	04
		T	Γ	Ť		T	T	Ť	r	
BE Sem.	HIOTC701: Dynamic Paradigm in IoT	04			20	80			100	04
VII	HIOTSBL701: Interfacing & Programming with IoTLab (SBL)			04			50	50	100	02
	Total	04	-	04	100		50	50	200	06
								Tota	Credits =	06
D.5	LU. T0004									
BE Sem.	HIoTC801: Industrial IoT	04	-		20	80			100	04
VIII	Total	04	-	-	100		-	-	100	04
	<u> </u>							Tota	Credits =	04
Total Credits for Semesters V,VI, VII &VIII = 04+04+06+04=18										

		Int	ernet of Th	ings: Sem V	,			
Course Code	Course Title	Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total
HIoTC501	IoT Sensor Technologies	04			04			04

					Examinati	ion Scheme			
Course	Course Title		The	ory Marks	(S Taure				
Code	Course Title	Internal assessment End Sem.	Term Work	Practical	Oral	Total			
		Test1	Test 2	Avg	Exam	WOIK			
HIoTC501	IoT Sensor Technologies	20	20	20	80				100

Course Objectives:

Sr. No.	Course Objectives				
The cours	The course aims:				
1	To provide in depth knowledge about the sensing mechanism.				
2	To make students understand about the use of sensors in design of IoT based systems.				
3	To familiarize students various types of sensors used to measure the physical quantities.				
4 To develop reasonable level of competence in the design, construction and development of sensor					
	suitable to the system requirements.				
5	To Introduce students the current state of the art in sensor technology.				
6	To familiarize students with electronics used to interface with sensors.				

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	essful completion, of course, learner/student will be able to:	
1	Understand the sensing mechanism and structural details of sensors.	L1, L2
2	Explain principles and working of the sensors.	L1,L2
3	Evaluate the performance of various types of sensors.	L5
4	Select the sensor suitable to system requirements.	L5
5	Interface the sensors with microcontrollers and Arduino	L6
6	Understand the current state of the art in sensor technology.	L2

DETAILED SYLLABUS:

Sr.	Module	Detailed Content	Hours	CO Mapping
No.				
0	Prerequisite	Basics of Electrical and Electronics Engineering	2	CO 1, CO2, CO3,
		2. Applied Mechanics		CO4, CO5
		3. Applied Physics, Applied Chemistry		

1	Soncor	Concor Eundamentals and Droparties, Introduction to LaT	8	CO1, CO2
'	Sensor	Sensor Fundamentals and Properties: Introduction to IoT,	0	CO1, CO2
	Fundamental	Need for sensors in IoT, Data Acquisition – sensor		
	s and	characteristics – electric charges, fields, potentials –		
	Properties	capacitance – magnetism – inductance – resistance –		
		piezoelectric – pyroelectric – Hall effect thermoelectric		
		effects – sound waves – heat transfer – light – dynamic		
		models of sensors. Need of actuators, all types of actuators		
		· · · · · · · · · · · · · · · · · · ·		
		and their working. Identification of sensor and actuator for		
		real-time application		
		Self-learning Topics: IoT Systems, Transfer function and		
		modelling of sensors		
II	Optical,		8	CO1, CO2, CO3,
	radiation and	Optical, radiation and Displacement sensors Photosensors:		CO4
	Displacement	Photodiode, phototransistor and photo resistor, imaging		
	sensors	sensors, UV detectors, Basic Characteristics of radiation		
		sensors, Thermal infrared sensors, X-ray and Nuclear		
		Radiation Sensors, Fibre Optic Sensors, Capacitive and		
		Inductive Displacement Sensor, Electromagnetism and		
		Inductance, Magnetic Field Sensors		
		Solf learning Tonics, Ontical sources and detectors Sources		
		Self-learning Topics: Optical sources and detectors, Sensors		
		based on polymer optical fibers, Micro-structured and solid		
	_	fibers	_	
III	Presence,	Presence, force, Pressure, Flow Sensors	9	CO1, CO2, CO3,
	force,	Potentiometric Sensors, Piezoresistive Sensors, Capacitive		CO4
	Pressure,	•		
	Flow Sensors	Sensors for presence, Inductive and Magnetic Sensors, Strain		
		gages, Pressure sensitive films, piezoelectric force sensor,		
		Piezoelectric Cables, Concept of Pressure, Mercury Pressure		
		Sensor, Bellows, Membranes, and Thin Plates, Piezo resistive		
		Sensors, Capacitive Sensors, VRP Sensors, Optoelectronic		
		Pressure Sensors, Indirect Pressure Sensor, Vacuum Sensors,		
		Basics of Flow Dynamics, Pressure Gradient Technique,		
		Thermal Transport Sensors, Ultrasonic Sensors, Level Sensors		
		Thermal transport sensors, our asonic sensors, Level Sensors		
		Self-learning Topics: Vibration energy harvesting with		
		Piezoelectric, MEMS systems. Develop a sensor system for		
		force measurement using piezoelectric transducer. Develop		
		Resistance Temperature Detector		
IV	Humidity,	Humidity, Moisture Chemical and Biological Sensors	8	CO1, CO2, CO3,
	Moisture	Missack and Characteristics 2 and 1		CO4, CO5
	Chemical and	Microphones: Characteristics, Resistive, condenser, Electret,		
	Biological	Optical, Pizoelectric, Dynamic,		
	Sensors	Concept of humidity Conscitive Humidity Consers Resistive		
	JC113013	Concept of humidity, Capacitive Humidity Sensors, Resistive		
		Humidity Sensors, Thermal Conductivity Sensors, Optical		
		Hygrometers, Oscillating Hygrometer, Soil Moisture		
		Chemical Sensor Characteristics, Electrical and		
		Electrochemical Sensors, Photoionization Detectors, Physical		
		Electrochemical Sensors, Photolomization Detectors, Physical		

		Transducers, Spectrometers, Thermal Sensors, Optical Transducers, Multi-sensor Arrays Artificial Microsystems for Sensing Airflow, Temperature, and Humidity by Combining MEMS and CMOS Technologies		
V	Interface	Self-learning Topics: Biosensors for biomedical applications Interface Electronic Circuits	8	CO1 CO2 COE
V	Electronic Circuits	Introduction, Signal Conditioners, Sensor Connections, Excitation Circuits, Analog to Digital Converters, Integrated Interfaces, Data Transmission, Noise in Sensors and Circuits, Batteries for Low-Power Sensors, Types of Single board computers, various sensor interfacing with Arduino, Embedded C Programming. data communication protocol interfacing, study the properties of LDR, Build a simple LED light intensity controller, Linux on Raspberry Pi, Interfaces, and Programming.	8	CO1, CO2, CO5
		Self-learning Topics: Python Programming to interface		
		sensors		
VI	Current Trends in sensors and Technology	Current Trends in sensors and Technology Smart Sensors: Introduction, Primary sensors, Excitation, Amplification, Filters, Converters, Compensation, Information Coding/Processing, Data Communication, Standards for Smart Sensor Interface, The Automation	9	CO1, CO2, CO3, CO4, CO5, CO6
		Sensor Technologies: Introduction, Film Sensors, Thick Film Sensors, Thin Film Sensors, Semiconductor IC Technology—Standard Methods, Microelectromechanical Systems (MEMS), Nano-sensors		
		Sensor Applications: Onboard Automobile sensors, Home appliances sensors, Aerospace Sensors, Sensors for Environmental Monitoring		
		Self-learning Topics: Energy Harvesting, Self-powered Wireless Sensing in ground, Ground penetrating sensors		

- 1. Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015, 3rd edition, Springer, New York.
- 2. Jon. S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netherland
- 3. D. Patranabis Sensor and Transducers (2e) Prentice Hall, New Delhi, 2003
- 4. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)",1st Edition, VPT, 2014

References:

- 1. Edited by Qusay F Hasan, Atta ur rehman Khan, Sajid A madani, "Internet of Things Challenges, Advances, and Application", CRC Press
- 2. Triethy HL Transducers in Electronic and Mechanical Designs, Mercel Dekker, 2003
- 3. Gerd Keiser,"Optical Fiber Communications", 2017, 5th edition, McGraw-Hill Science, Delhi.

- 4. John G Webster, Halit Eren, "Measurement, Instrumentation and sensor Handbook", 2014, 2nd edition, CRC Press, Taylor and Fransis Group, New York.
- 5. Adrian McEwen, "Designing the Internet of Things", Wiley Publishers, 2013, ISBN: 978-1-118-43062-0
- 6. Nathan Ida, "Sensors, Actuators and their Interfaces: A Multidisciplinary Introduction", Second Edition, IET Control, Robotics and Sensors Series 127, 2020

Online References:

Sr. No.	Website Name
3.	https://nptel.ac.in/courses/108/108/108108123/
4.	https://nptel.ac.in/courses/108/108/108108098/
3.	https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-ee41/
4.	https://nptel.ac.in/courses/108/106/108106165/

Assessment:

Internal Assessment (IA) for 20 marks:

IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus
content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be
covered in Second IA Test

Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of four questions need to be answered

Internet of Things: Sem VI										
Course Code	Course Title	Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total		
HIoTC601	loT System Design	04			04			04		

	Course Title	Examination Scheme								
Course		Theory Marks				_				
Code		Internal assessment			End Sem.	Term Work	Practical	Oral	Total	
		Test1	Test 2	Avg.	Exam					
HIoTC601	IoT System Design	20	20	20	80				100	

Sr. No.	Course Objectives
The cours	e aims:
1	To learn basic principles, concepts, and technologies for internet of things.
2	To understand various architectures of IOT.
3	To train the students to build IoT systems using sensors, single board computers and open source IoT
	platform for given application.
4	To learn and implement various networking and communication protocols.
5	To design and analyze IoT for given applications.
6	To Evaluate performance of given IoT system.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	essful completion, of course, learner/student will be able to:	
1	Able to explain principles, concepts, and technologies for internet of things.	L1, L2
2	Able to identify various building blocks of IoT system	L1,L2
3	Able to analyze and evaluate various networking and communication protocols used	L3,L4
	in IoT system	
4	Able to select appropriate interface for given application	L3
5	Able to design and analyze IoT system for given application	L4,L5
6	Able to evaluate performance of given IOT System	L5

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Comment (Prerequisite syllabus should not be considered for paper setting) Basics of Embedded System, IoT Sensors, Digital design	2	

I	Overview of IoT System	What is IoT System? IoT Impact, Current Trends in IoT, IoT Challenges, Comparing IoT Architectures, A Simplified IoT Architecture, The Core IoT Functional Stack How are IoT Systems different from traditional system Values and Uses of IoT Functional View and Infrastructure view of IoT Systems Self-learning Topics: Understanding the Issues and Challenges of a More Connected World	6	CO1, CO2
II	Networking Protocols	OSI Model for the IoT/M2M System Lightweight M2M Communication Protocols, Internet based Communications, IP addressing in IoT, Network Model, TCP & UDP, Client-Server architecture Self-learning Topics: How to choose correct protocol for our network.	8	CO3
III	Communicat ion Protocols	IoT Edge to Cloud protocols: HTTP, REST APIs, WebSocket, MQTT, COAP, Comparison of Protocols.M2M Communication Protocols, Bluetooth BR/EDR and Bluetooth low energy. RFID IoT System, RFID IoT Network Architecture, ZigBee IP/ZigBee SE2.0, Wifi(WLAN), Message Communication protocols for connected devices Data exchange formats: JSON & XML, Node-Red, Flow control using Node-Red, learning the different nodes of Node-RED for implementing the Communication Protocols Self-learning Topics: Types of Communication	10	CO3,CO4
IV	Sensor Interfaces	Digital Interfaces: UART, Serial Peripheral Interface (SPI), I2C (Inter-Integrated Circuit), Controller Area Network (CAN), Middleware Technologies, Communication Protocols and Models. Practical Components Programming with interface in Arduino, MBed and Raspberry Pi Self-learning Topics: SMART SENSOR INTERFACES	10	CO4
V	Design principles for prototyping	Design solution for ubiquitionos and utility, Interface design for user experience, Designing for data privacy, Interfacing – Apps & Webs, Designing for Affordability, Cost v/s Ease of Prototyping, Prototypes and Production, Selection of embedded platform, Prototype and Mass personalization, Open Source v/s Closed Source ,Amplification and Signal Conditioning- Integrated Signal Conditioning- Digital conversion- MCU Control MCUs for Sensor Interface- Techniques and System Considerations- Sensor Integration	8	CO5
		Self-learning Topics: Principles for Prototyping and moving towards Product Development		
VI	IoT, case studies	Arduino Programming for Ethernet and Wifi connectivity, Networking and Data logging with Raspberry Pi Applications-Agriculture, Medical, Fire detection, Air pollution prediction, Earthquake early detection; for smart environmental care, smart traveling, Home Automation	8	CO6
		Self-learning Topics: IoT enabled Business solution in Supply Chain		

Text Books:

- 1. S. Misra, A. Mukherjee, and A. Roy, 2020. Introduction to IoT. Cambridge University Press.
- 2. Adrian McEwen and Hakim Cassimally, —Designing the Internet of Things||, John Wiley and Sons Ltd, UK, 2014.

- 3. Milan Milenkovic, Internet of Things: Concepts and System Design, Springer International Publishing, May 2020cation
- 4. Dr.Raj Kamal,Internet of Things(IoT), Architecture and Design Principles.McGraw Hill Education.

References:

- 1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things
- 2. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.
- Editors OvidiuVermesan Peter Friess, Internet of Things From Research and Innovation to Market
- **4.** Dr. Guillaume Girardin , Antoine Bonnabel, Dr. Eric Mounier, 'Technologies Sensors for the Internet of Things Businesses & Market Trends 2014 -2024', Yole Development Copyrights ,2014

Assessment:

Internal Assessment (IA) for 20 marks:

 IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of four questions need to be answered

Internet of Things: Sem VII									
Course Code	Course Title	Theory	Practical	Tutorial	Theory	Practical/ Oral	Tutorial	Total	
HIoTC701	Dynamic Paradigm in IoT	03			03			03	

Course	Course Title	Examination Scheme								
Code	Code		Theory Marks							
		Internal assessment			End Sem.	Term	Dractical	Oral	Total	
		Test1	Test 2	Avg. of 2 Tests	End Sein. Exam	Work	Practical	Orai	lotai	
HIoTC701	Dynamic Paradigm in IoT	20	20	20	80				100	

Sr. No.	Course Objectives
The course	e aims:
1	To explore the role of the cloud in Internet of Things deployment.
2	To introduce the usage of different machine learning algorithms on IoT Data.
3	To explore data analytics and data visualization on IoT Data.
4	To explore the role of Fog computing in Internet of Things.
5	To explore design issues and working principles of various security measures and various standards for
	secure communication in IoT.
6	To develop the ability to integrate IoT with Dev-ops.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	essful completion, of course, learner/student will be able to:	
1	Identify the need for the cloud in IoT deployment and describe different Cloud provider's architecture.	L1,L2
2	Use and correlate machine learning techniques on IoT Data.	L3,L4
3	Apply IoT analytics and data visualization.	L3
4	Recognize the use of Fog Computing in the Internet of things.	L1,L2
5	Explain the need of security measures in the Internet of Things.	L4
6	Apply the knowledge of Dev-ops in IoT applications.	L3

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Basics of Cloud Computing, Basics of Machine learning and primitives of cryptography	2	

	IoT and	Cloud Computing Consent Crid/COA and Cloud Computing Cloud	10	CO1
'	CLOUD	Cloud Computing Concept, Grid/SOA and Cloud Computing, Cloud Middleware	10	COI
	CLOOD	NIST's SPI Architecture and Cloud Standards, The Cloud of Things		
		The Internet of Things and Cloud Computing		
		The Cloud of Things Architecture Four Deployment Models,		
		Vertical Applications, Fifteen Essential Features, Four		
		Technological Pillars, Three Layers of IoT Systems, Foundational		
		Technological Enabler Cloud Providers and Systems Microsoft		
		Azure IoT, Amazon Web Services, Google's cloud IoTs.		
		Theate 101) Tilliazon Web Sel Vices, Google S cloud 1013.		
		Self-learning Module: IBM Watson Cloud		
II	IoT and	Advantages of IoT and Machine Learning Integration,	6	CO2
	Machine	Implementation of Supervised Algorithm- Regression (Linear and		
	Learning	Logistic), SVM for IoT-Neural Network on case study: Agriculture and		
		IoT, Smart Home etc.		
		Self-Learning Module: Regression, SVM		
III	IoT and Data	Defining IoT Analytics, IoT Analytics challenges, IoT analytics for the	8	CO3
	Analytics	cloud-Microsoft Azure overview— Strategies to organize Data for IoT		
	•	Analytics, Linked Analytics Data Sets, Managing Data lakes, The data		
		retention strategy. Communicating with Others- Visualization and		
		Dash boarding- Designing visual analysis for IoT data, creating a		
		dashboard –creating and visualizing alerts.		
		Self-learning Topics: Study real time case study on IoT Analytics.		
IV	IoT and Fog		8	CO4
IV	IoT and Fog Computing	Fog computing Basics, The Hadoop philosophy for Fog computing, Fog Computing versus Edge Computing versus cloud computing,	•	CO4
	Computing	Open Fog Reference Architecture Application services Application		
		support, Node management and software backplane, Hardware		
		virtualization, Open Fog node security, Network Accelerators		
		Compute, Storage Hardware platform infrastructure, Protocol		
		abstraction, Sensors, actuators, and control systems, Fog Topology.		
		Self-learning Module: Amazon Green grass and Lambda		
	InT and W.	(implementation)		605
V	IoT and it's	Cyber security vernacular Attack and threat terms, Defense terms,	8	CO5
	Security	Anatomy of IoT cyber attacks – Mirai, Stuxnet, Chain Reaction,		
		Physical and hardware security, Root of Trust, Key management and trusted platform modules, Processor and memory space, Storage		
		security, Network stack – Transport Layer Security, Software defined		
		perimeter, Software-Defined Perimeter architecture,		
		permitter, software beimea'r ermitter aremittettare,		
		Self-learning Module: OWASP-Existing Security attacks and its		
		prevention methods.		
VI	IoT and	Introduction to DevOps, DevOps application - business scenarios,	10	CO6
	Devops	DevOps process Source Code Management (SCM), Code review,		
		Configuration Management, Build management, Artifacts repository		
		management, Release management, Test automation, Continuous		
		integration, Continuous delivery, Continuous deployment,		
		Infrastructure as Code, Routine automation, Key application		
		performance monitoring/indicators. DevOps frameworksDevOps		
1		maturity life cycle, DevOps maturity map, DevOps progression		

framework/readiness model, DevOps maturity checklists, Agile framework for DevOps process projects, Agile ways of development	
Tool for IoT —Chef and Puppet, Setting up Chef and Puppet, Multi-tier Application Deployment, NETCONF-YANG Case Studies- Steps for IoT device management with NETCONF-YANG, Managing Smart irrigation IoT system with NETCONF-YANG, Managing Home Intrusion Detection IoT system with NETCONF-YANG	
Self-learning Topics: Compare different tool of IoT.	

Text Books:

- 1. The Internet of Things in the Cloud A Middleware Perspective, Honbo Zhou CRC Publication.
- 2. Analytics for the Internet of Things (IoT), Andrew Minteer, Packt Publication 2017
- 3. Internet of Things- Hands on Approach, Arshdeep Bagha, Vijay Medisetti, Published by Arshdeep Bagha and Vijay Medisetti, 2014.
- 4. Hands-on DevOps, Sricharan Vadapalli, Packt Publication, 2017
- 5. Internet of things For Architects, Perry Lea Packt Publication, 2018

References:

- 1. Enterprise Cloud Computing, Gautam Shroff, Cambridge, 2010
- 2. Mastering Cloud Computing -Foundations and Applications Programming, Raj Kumar Buyya, Christian Vecchiola, S. Thamarai Selvi, MK Publication, 2013.
- 3. Machine Learning in Action||, Peter Harrington, DreamTech Press
- 4. Introduction to Machine Learning||, Ethem Alpaydın, MIT Press
- 5. Learning AWS IoT- Effectively Manage Connected Devices on the AWS Cloud Using Services Such as AWS Greengrass, AWS Button, Predictive Analytics and Machine Learning, Agus Kurniawan, Packt Publication, 2018
- 6. Practical Dev-Ops, Joakim Verona, Packt Publication, 2016

Online References:

Sr. No.	Website Name
1.	https://hub.packtpub.com/25-datasets-deep-learning-iot/
2.	https://data.world/datasets/iot
3.	https://dashboard.healthit.gov/datadashboard/data.php
4.	https://www.data.gov/
5.	https://dev.socrata.com/data/
6.	https://www.kaggle.com/

Assessment:

Internal Assessment (IA) for 20 marks:

 IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Internet of Things: Sem VII									
Teaching Scheme (Contact Hours) Credits Assigned									
Course Code	Course Title	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
HIoTSBL701	Interfacing & Programming with IoT Lab (SBL)		4			2		02	

Course Code	Course Title	Examination Scheme								
			TI	neory Marks						
			nternal as	sessment	End	Term	Oral	Total		
		Test1 To	Test 2	Avg. of 2 Tests	Sem.	Work	Orai	Total		
			1630 2		Exam					
HIoTSBL701	Interfacing &									
	Programming with					50	50	100		
	IoT Lab (SBL)									

Lab Objectives:

Sr. No.	Lab Objectives
The Lab ai	ims:
1	To Understand the definition and significance of the Internet of Things.
2	To Discuss the architecture, operation, and business benefits of an IoT solution.
3	To Examine the potential business opportunities that IoT can uncover.
4	To Explore the relationship between IoT, cloud computing, and DevOps.
5	To Identify how IoT differs from traditional data collection systems.
6	To Explore the interconnection and integration of the physical world and able to design & develop IOT
	Devices.

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy					
On succ	On successful completion, of lab, learner/student will be able to:						
1	Adapt different techniques for data acquisition using various IoT sensors for different applications.	L6					
2	Demonstrate the working of actuators based on the collected data.	L2					
3	Use different IoT simulators and correlate working of IoT protocols.	L3					
4	Adapt different techniques for Integrating IoT services to other third-party Clouds.	L6					
5	Execute DevOps methodologies for continuous integration and continuous deployment of IoT application.	L3					
6	Implement IoT protocols like MQTT for communication to realize the revolution of internet in mobile devices, cloud and sensor networks.	L3					

Prerequisite:

IoT introduction course: Basics of IoT, Introduction to Embedded systems

Hardware & Software Requirements:

Hardware Requirements	Software Requirements	Other Requirements
PC With Following Configuration	1. Windows or Linux Desktop OS	1. Internet Connection for
1. Intel PIV Processor	2. DeVops	installing additional packages if
2. 4 GB RAM	2. 500003	required
3. 500 GB Harddisk	3.Python	
4. Network interface card	4 1-7 6 1-1/5 1-1/-	
5. Sensors	4. IoT Simulator/Emulator (open	
6. IoT Kit (Arduino/ARM/Raspberry Pi)	source)	

This lab will describe the market around the Internet of Things (IoT), the technology used to build these kinds of devices, how they communicate, how they store data, and the kinds of distributed systems needed to support them. Divided into four main modules, we will learn by doing. We will start with simple examples and integrate the techniques we learn into a class project in which we design and build an actual IoT system. The client will run in an emulated ARM environment, communicating using common IoT protocols with a cloud enabled backend system with DevOps integration.

Suggested List of Experiments

Sr. No.	Detailed Content	Hours	LO Mapping
1	To study and implement interfacing of different IoT sensors with Raspberry Pi/Arduino/ModeMCU	4	LO1
2	To study and implement interfacing of actuators based on the data collected using IoT sensors. (like led switch ON/OFF, stepper word)	4	LO2
3	To study and demonstrate Contiki OS for RPL (like Create 2 border router and 10 REST clients, Access border router from other network (Simulator))	4	LO3
4	To study and demonstrate use of IoT simulators (like Beviswise) on any real time device (LED/stepper motor)	4	LO3
5	Select any one case study (in a group of 2-3) and perform the experiments 5 to 10. The sample case studies can be as follows: 1. Smart home automation system 2. Healthcare management system 3. Smart traffic management system & so on Write a program on Raspberry Pi to push and retrieve the data from cloud like thingspeak, thingsboard, AWS, Azure etc.	8	LO4
6	To install MySQL database on Raspberry Pi and perform basic SQL queries for analysis data collected.	6	LO4
7	To study and implement IoT Data processing using Pandas.	4	LO4

8	To study and implement Continuous Integration using Jenkins on IoT data and also perform interfacing of Raspberry Pi into Jenkins.	6	LO6
9	To study and implement Continuous Deployment (Infrastructure as a code) for IoT using Ansible.	6	LO6
10	To study MQTT Mosquitto server and write a program on Arduino/Raspberry Pi to publish sensor data to MQTT broker.	6	LO5

Books / References:

- 1. Jake VanderPlas, "Python Data Science Handbook", O'Reilly publication, 2016
- 2. Joakim Verona," Practical DevOps", PACKT publishing, 2016
- 3. Honbo Zhou," The internet of things in the cloud", CRC press, Taylor and Francis group, 2012
- 4. Perry Lea," Internet of things for architects", PACKT publishing, 2018

Online Resources:

Sr. No.	Website Name
1.	https://spoken-tutorial.org/watch/Arduino/Introduction+to+Arduino/English/
2.	https://pythonprogramming.net/introduction-raspberry-pi-tutorials/
3.	https://iotbytes.wordpress.com/basic-iot-actuators/
4.	http://www.contiki-os.org/
5.	https://www.bevywise.com/iot-simulator/
6.	https://mqtt.org/

Term Work:

The Term work shall consist of at least 10 practical based on the above list. The term work Journal must include at least 2 assignments. The assignments should be based on real world applications which cover concepts from all above list.

Term Work Marks: 50 Marks (Total marks) = 40 Marks (Experiment) + 5 Marks (Assignments/tutorial/write up) + 5 Marks (Attendance)

Oral Exam: An Oral exam will be held based on the above syllabus.

Internet of Things: Sem VIII									
Course Code Course Title Theory Practical Tutorial Theory Practical/Oral Tutorial Total								Total	
HIoTC801	Industrial IoT	04			04			04	

Course Code	Course Title	Examination Scheme								
		Theory Marks Internal assessment			End	Term				
		Test1	Test 2	Avg. of 2 Tests	Sem. Exam	Work	Practical	Oral	Total	
HIoTC801	Industrial IoT	20	20	20	80				100	

Sr. No.	Course Objectives
The cours	e aims:
1	To learn the concepts of Industry 4.0 and IIOT.
2	To learn reference Architecture of IIOT.
3	To learn Industrial Data Transmission and Industrial Data Acquisition.
4	To learn middleware and WAN technologies.
5	To learn IIOT Block chain and Security.
6	To learn different applications and securities in IIOT.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	essful completion, of course, learner/student will be able to:	
1	Understand the concepts of Industry 4.0 and IIOT.	L1,L2
2	Understand reference Architecture of IIOT.	L1,L2
3	Understand Industrial Data Transmission and Industrial Data Acquisition.	L1,L2
4	Understand middleware and WAN technologies in IIOT.	L1,L2
5	Understand the concepts of Blockchain and Security in IIOT.	L1,L2
6	Apply security in IIOT applications.	L3

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	IOT Concepts, Sensor Technology, IOT Stack and Protocols, Design IoT systems, WSN etc.	02	

I	Introduction	Overview of Industry 4.0 and Industrial Internet of Things, Industry 4.0: Industrial Revolution: Phases of Development, Evolution of Industry 4.0, Environment impacts of industrial revolution, Industrial Internet, Basics of CPS, CPS and IIOT, Design requirements of Industry 4.0, Drivers of Industry 4.0, Sustainability Assessment of Industries, Smart Business Perspective, Cyber security, Impacts of Industry 4.0, Industrial Internet of Things: Basics, IIOT and Industry 4.0, Industrial Internet Systems, Industrial Sensing, Industrial Processes, IIOT Challenges – Identifying Things within the internet, Discovering Things and the Data they possess, Managing massive amount of data, Navigating Connectivity Outages, IIOT Edge - Leveraging the Power of Cloud Computing, Communicating with Devices on the Edge, Determining a Request/Response Model Self-learning Topics: Study real time IIoT challenges in industry.	06	CO1
II	IIOT Reference Architecture	The IIC Industrial Internet Reference Architecture - Industrial Internet Architecture Framework (IIAF),Industrial Internet Viewpoints -Functional, Operational, Information Application and Business Domain of IIAF. The Three-Tier Topology, Key Functional Characteristics of Connectivity. Software Architectural Style for the Industrial Internet of Things - Software Architectural Style for the Industrial Internet of Things - Software Architecture Practice, Advanced Architectural Styles, Systems of Systems, Challenges of Software Engineering in IIoT, Principles for Software Architecture design in IIoT, The Principled Decomposition, The Architectural Style Self-learning Topics: Study IIoT Architecture.	08	CO2
III	Industrial Data Transmission and Industrial Data Acquisition	Introduction, (Features and Components of - Foundation Fieldbus, Profibus, HART,Interbus, Bitbus, CC-Link, Modbus, Batibus, DigitalSTROM, Controller Area Network, DeviceNet, LonWorks, ISA 100.11a, Wireless HART, LoRa and LoRaWAN) NB-IoT, IEEE 802.11AH, Distributed Control System, PLC, SCADA Self-learning Topics: Study SCADA, PLC in detail.	10	CO3
IV	IIOT Middleware and WAN Technologies	(From Industrial Application Perspective) Examining Middleware Transport Protocols (TCP/IP, UDP, RTP, CoAP), Middleware Software Patterns (Publish Subscribe Pattern, Delay Tolerant Networks), Software Design Concepts – Application Programming Interface – A Technical Perspective, Why Are APIs Important for Business? Web Services, IIOT Middleware Platforms – Middleware Architecture	10	CO4

		IIOT WAN Technologies and Protocols - IIoT Device Low-Power WAN Optimized Technologies for M2M, SigFox,LoRaWAN,nWave, Dash7 Protocol, Ingénue RPMA, Low Power Wi-Fi, LTE Category-M, Weightless, Millimeter Radio Self-learning Topics: Study different IIoT Middleware and WAN Technologies.		
V	IIOT Blockchain and Security	Blockchains and cryptocurrencies in IoT, Bitcoin (blockchain-based), IOTA- distributed ledger (directed a cyclical graph-based), Government regulations and intervention, US Congressional Bill – Internet of Things (IoT) Cyber security Improvement Act of 2017, Other governmental bodies, IoT security best practices, Holistic security.	08	CO5
		Self-learning Topics: Case study on IIoT Block chain and Security.		
VI	IIOT Applications and Securities	The IoT Security Lifecycle- The secure IoT system implementation lifecycle, Implementation and integration, IoT security CONOPS document, Network and security integration, System security verification and validation (V&V), Security training, Secure configurations, Operations and maintenance, Managing identities, roles, and attributes, Security monitoring, Penetration testing, Compliance monitoring, Asset and configuration management, Incident management, Forensics, Dispose, Secure device disposal and zeroization, Data purging, Inventory control, Data archiving and records management	08	CO6
		Securing the Industrial Internet - Security in Manufacturing, PLCs and DCS, Securing the OT (Operation Technology), Network, System Level: Potential Security Issues, Identity Access Management		
		Develop New Business Models –		
		Adopt Smart Architectures and Technologies, Sensor-Driven Computing, Industrial Analytics, Intelligent Machine Applications, Transform the Workforce		
		Case Studies –		
		Healthcare Applications in Industries – Challenges associated with Healthcare, Introduction, Smart Devices, Advanced technologies used in Healthcare.		
		Inventory Management and Quality Control – Introduction, Inventory Management and IIOT, Quality Control		
		Manufacturing Industry, Automotive Industry and Mining Industry		
		Self-learning Topics: Study real time IIoT application.		

Text Books:

- 1. "Industry 4.0: The Industrial Internet of Things", by Alasdair Gilchrist (Apress)
- 2. "Introduction to Industrial Internet of Things and Industry 4.0", by Sudip Misra, Chandana Roy And Anandarup Mukherjee, CRC Press (Taylor & Francis Group)
- 3. "Internet of Things Principles and Paradigms", by Rajkumar Buyya, Amir Vahid Dastjerdi, ELSEVIER Inc.
- 4. Internet of things For Architects, Perry Lea Packt Publication, 2018

References:

- 1. "Practical Internet of Things Security", by Brian Russell, Drew Van Duren (Packt Publishing)
- 2. "Industrial Internet of Things and Communications at the Edge", by Tony Paine, CEO, Kepware Technologies
- 3. "Architectural Design Principles For Industrial Internet of Things", Hasan Derhamy, Luleå University of Technology, Graphic Production

Online References:

Sr. No.	Website Name
1.	https://onlinecourses.nptel.ac.in/noc20 cs69/preview
2.	https://www.coursera.org/specializations/developing-industrial-iot
3.	https://www.coursera.org/lecture/advanced-manufacturing-enterprise/the-industrial-
	internet-of-things-iiot-59EvI
4.	https://www.coursera.org/lecture/industrial-iot-markets-security/segment-12-
	blockchains-l4aG9

Assessment:

Internal Assessment (IA) for 20 marks:

 IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of four questions need to be answered

University of Mumbai

Syllabus

Honours/Minor Degree Program

In

Waste Technology

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2022-2023)

University of Mumbai Waste Technology (With effect from 2022-23)

Year and	Course Code and Course Title	Teaching Scheme Hours/ Week			Examination Scheme and Marks				Credit Scheme	
Sem		Theory	Seminar/ Tutorial.	Pract.	Internal Assess ment	End Sem Exam	Term Work	Oral	Total	Credits
TE Sem V	HCWC501: Solid And Hazardous Waste Management	4	-	-	20	80	_	-	100	4
	Total	4	-	-	10	00	-	_	100	4
	Total Cre						redits=04			
TE Sem VI	HCWC601: Liquid Effluent Management	4	-	_	20	80	_	_	100	4
VI	Total	4	-	-	10	00	-	-	100	4
					1				Total C	credits=04
	HCWC701: Waste Volorization I	4	-	-	20	80	_	-	100	4
BE Sem VII	HCWSBL701: Waste Technology .Skill Based Lab -1	-	-	2	_	-	50	50	100	2
	Total	4	-	2	10	00	50	50	200	6
					•			•	Total C	redits=06
BE Sem VIII	HCWC801: Sustainable Waste Volorization II	4	-	-	20	80	-	_	100	4
V 111	Total	4	_	-	10	00	_	_	100	4
	Total Credits=04									

Total Credit for Semester V+VI+VII+VIII=18

Waste Technology: Semester V						
Course Code	Course Name	Credits				
HCWC501	SOLID AND HAZARDOUS WASTE MANAGEMENT	04				

	Course Hours				Credits Assigne	ed	
Theory	ory Practical Tutorial		Theory	Theory Tutorial Total			
04	-	-	04	-	-	04	

	Theory					Term Work / Practical/Oral			
	rnal Assessm		End Sem	Duration of End Sem	TW	PR	OR		
Test-I	Test-II	Average	Exam	Exam					
20	20	20	80	03 Hrs				100	

- 1. To recognize the relevant, regulations that apply for facilities used for disposal and destruction of waste.
- 2. To provide in depth knowledge of municipal solid waste management
- 3. To provide in-depth knowledge of hazardous waste management
- 4. To provide in-depth knowledge of Physico-chemical processes useful for the treatment of municipal and solid wastes
- 5. To provide in-depth knowledge of biological processes useful for the treatment of municipal and solid wastes.
- 6. Know the necessity of environment risk assessment.

Module	Content	Hours
1	Rules and Regulations	4
	Municipal solid waste (management and handling) rules, hazardous waste (management	
	and handling) rules, biomedical waste handling rules, fly ash rules, recycled plastics usage	
	rules, batteries (management and handling) rules	
2	Municipal Solid Waste Management	9
	Need for management, sources, composition, generation rates, collection of waste,	
	separation, transfer and transport of waste, treatment and disposal options, source	
	reduction of wastes, recycling and reuse.	
3	Hazardous Waste Management	9
	Need for management, hazardous characterization of waste, compatibility and	
	flammability of chemicals, waste sampling, TCLP tests, fate and transport of chemicals,	
	health effects	
4	Physicochemical Treatment of Solid and Hazardous Waste	9
	Chemical treatment processes for MSW (combustion, stabilization and solidification of	
	hazardous wastes), physicochemical processes for hazardous wastes (soil vapour	
	extraction, air stripping, chemical oxidation), ground water contamination and	
	remediation	

5	Biological Treatment of Solid and Hazardous Waste	14
	Composting, bioreactors, anaerobic decomposition of solid waste, principles of biodegradation of toxic waste, inhibition, co-metabolism, oxidative and reductive processes, slurry phase bioreactor, in-situ remediation. Landfill design for solid and hazardous wastes, leachate collection and removal, landfill covers, incineration	
6	Environmental Risk Assessment Defining risk and environmental risk, methods of risk assessment, case studies	7

Course Outcome:

On completion of the course the students will:

- 1 understand rules and regulations for handling solid waste.
- 2 understand principals of municipal solid waste management.
- 3 understand hazardous waste management.
- 4 learn physicochemical treatment of solid and hazardous waste.
- 5 understand biological treatment of solid and hazardous waste.
- 6 understand environment risk assessment.

Assessment

Internal Assessment (20 Marks):

Consisting Two Compulsory Class Tests.

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I).

End Semester Examination (80 marks):

- 1. Weightage of each module in end semester examination will be proportional to number of respective lectures.
- 2. Question paper will comprise of total six questions, each carrying 20 marks.
- 3. Question 1 will be compulsory and should cover maximum contents of the curriculum.
- 4. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).
- 5. Only Four questions need to be solved.

Test Books/Reference Books:

- 1 Tchobanoglous G., Theisen H. and Vigil S.A., "Integrated Solid Waste Management", McGraw-Hill International editions.
- Bhide A.D. and Sundaresan B.B., "Solid Waste Management, Collection, Processing and Disposal", Nagpur.
- 3 "Manual on Municipal Solid Waste Management", CPHEEO, Ministry of Urban Development, Government of India.
- 4 Management and Handling Rules for: municipal solid waste, biomedical waste, hazardous waste and radioactive wastes, Government of India Publications.
- 5 Solid Waste Management Hand Book Pavoni

Waste Technology: Semester VI						
Course Code	Course Code Course Name					
HCWC601	LIQUID EFFLUENT MANAGEMENT	04				

Course Hours			Credits Assigned				
Theory	Practical	Tutorial	Theory Tutorial Total				
04	-	-	04	-	-	04	

	Theory						Term Work / Practical/Oral			
Inte	rnal Assessm	ent	End	Duration of End						
Test-I	Test-II	Average	Sem	Sem	TW	PR	OR			
			Exam	Exam						
20	20	20	80	03 Hrs				100		

- 1 To learn how to minimize waste and study available treatment options.
- 2 To know concept of pollution control.
- To learn ion exchange process and various adsorption techniques.
- 4 To study advanced methods for effluent management.
- 5 To know methods of waste reduction and how to recover byproducts.
- 6 To learn concepts and design of natural treatment system.

Module	Contents	Hours
1	Waste Minimization and Treatment options Methods of waste volume and strength reductions, Waste minimization - 4 R concepts, Waste audit, Classification of treatment and development of treatment flow sheets.	9
2	Pollution control Zero discharge concept. Concept of common effluent treatment plant- objectives, types of CETP, technical and financial aspects. Rural wastewater systems – septic tanks, two-pit latrines, ecotoilet, soak pits.	8
3	Ion Exchange and Adsorption Ion exchange process, ion exchange resins, exchange capacity, ion exchange, chemistry and reactions, Design of ion exchange units, Disposal of concentrate waste streams. Types of adsorption, adsorption isotherms, activated carbon adsorption kinetics, analysis and design of adsorption column.	9
4	Advanced methods for effluent management Ozonation, photocatalysis, wet air oxidation, evaporation, reverse osmosis, biological treatment for toxic waste	9
5	Waste Reduction/Byproduct recovery Waste reduction/ byproduct recovery for sugar, paper mill, petroleum and oil refineries, steel and engineering industries, fertilizer and pesticide industries, organic & inorganic manufacturing industries	9

6	Natural Treatment Systems	
	Constructed wetland and aquatic treatment systems; Types- free water surface and subsurface	8
	constructed wetlands, selection of plants, removal mechanisms, applications, design procedure	
	for constructed wetlands, management of constructed wetlands	

Course Outcomes:

- 1 Understand minimizing the waste and available treatment options.
- 2 Understand concept of pollution control.
- 3 Understand ion exchange process/design and adsorption techniques.
- 4 Advanced methods for effluent management.
- 5 Waste reduction/byproducts recovery for manufacturing industries.
- 6 Concepts and design of natural treatment system.

Assessment

Internal Assessment (20 Marks):

Consisting **Two Compulsory Class Tests.** First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I).

End Semester Examination (80 marks):

- 1. Weightage of each module in end semester examination will be proportional to number of respective lectures.
- 2. Question paper will comprise of total six questions, each carrying 20 marks.
- 3. Question 1 will be compulsory and should cover maximum contents of the curriculum.
- 4. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).
- 5. Only Four questions need to be solved.

Text Books and References:

- 1 Eckenfelder, W.W., Industrial Water Pollution Control, McGraw-Hill, 1999.
- 2 Arceivala, S.J., Wastewater Treatment for Pollution Control, McGraw-Hill, 1998.
- Frank Woodard, Industrial waste treatment Handbook, Butterworth Heinemann, New Delhi, 2001

Waste Technology: Semester VII						
Course Code	Course Name	Credits				
HCWC701	WASTE VALORIZATION I	04				

Course Hours			Credits Assigned				
Theory	Practical	Tutorial	Theory Tutorial Total				
04	-	-	04	-	-	04	

		Term Work	Total					
Inte	rnal Assessm	ent	End	Duration of End				
Test-I	Test-II	Average	Sem	Sem	TW	PR	OR	
			Exam	Exam				
20	20	20	80	03 Hrs				100

Course Outcomes:

- 1. To know waste valorization process used for reduce, reuse and recycle.
- 2. To learn biovalorization of industrial waste.
- 3. To know concept of biorefineries and related factors.
- 4. To learn recent trends and vermiculture.
- 5. To know biovalorisation of agriculture biomass.
- 6. To study case studies based on waste recycling.

Module	Contents	Hours
1	Wastes valorization processes:	5
	Preparation for reuse, recycling, and other valorisation processes. Analysis of advantages and	
	limitations.	
2	Bio-valorisation of industrial wastes:	12
	Anaerobic bio-valorisation of leather industry solid waste and production of high value-added	
	biomolecules and biofuels, Anaerobic bio-valorisation of pulp and paper mill waste, Bio-	
	valorisation of winery industry waste to produce value-added products, Conversion of textile	
	effluent wastewater into fertilizer using marine cyanobacteria along with different	
	agricultural waste.	
3	Biorefineries:	8
	Biorefinery for hydrocarbons and emerging contaminants, Biodesulfurization of petroleum	
	wastes, Microbial leaching of heavy metals from e- waste, opportunities and challenges.	
4	Biovalorisation of agricultural biomass:	11
	Recent trends in biorefinery-based valorisation of lignocellulosic biomass, Protein engineering	
	approaches for lignocellulosic ethanol biorefinery, Biovalorization potential of agro	
	forestry/industry biomass for optically pure lactic acid fermentation, Opportunities and	
	challenges, Agro-based sugarcane industry wastes for production of high-value bioproducts	
5	Recent trends and vermiculture	8
	Recent trends and challenges in bioleaching technologies, membrane separation technologies	
	for downstream processing. Definition, scope and importance – common species for culture	

	- environmental requirements - culture methods- applications of vermiculture-Potentials	
	and constraints for composting in India-large scale and decentralized plants.	
6	Case studies on waste recycling	8
	Recycling technologies for paper, glass, metal, plastic, used lead acid battery, end of life vehicle recycling, electronic waste recycling, waste oil, recycling solvent recovery, drivers and barriers for material recycling, social, legal and economic factors, environmental impacts of waste recycling, design for the environment the life cycle approach.	

Course Outcomes:

On completion of this course students will

- 1 understand the waste valorization process to reduce, reuse and recycle.
- 2 understand Biovalorization of industrial waste
- 3 understand concept of biorefineries, their opportunities and challenges
- 4 understand recent trends and vermiculture.
- 5 understand biovalorisation of agriculture biomass.
- 6 understand waste recycling using case studies.

Assessment

Internal Assessment (20 Marks):

Consisting **Two Compulsory Class Tests.** First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I).

End Semester Examination (80 marks):

- 1. Weightage of each module in end semester examination will be proportional to number of respective lectures.
- 2. Question paper will comprise of total six questions, each carrying 20 marks.
- 3. Question 1 will be compulsory and should cover maximum contents of the curriculum.
- 4. Remaining questions will be mixed in nature (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3).
- 5. Only Four questions need to be solved.

Text Books/ Reference Books

- Aarne Veslind and Alan E Rimer (1981), Unit operations in Resource Recovery Engineering, Prentice Hall Inc., London
- 2 Manser A G R, Keeling A A (1996). Practical handbook of processing and recycling on municipal waste. Pub CRC Lewis London, ISBN 1-56670-164
- 3 Chiumenti, Chiumenti, Diaz, Savage, Eggerth, and Goldstein, Modern Composting Technologies JG Press October 2005
- 4 Charles R Rhyner (1995), Waste Management and Resource Recovery, Lewis

Waste Technology: Semester VII						
Course Code	Course Code Course Name					
HCWSBL701	WASTE TECHNOLOGY SKILL BASED LAB	02				

	Course Hours		Credits Assigned				
Theory	Practical	Tutorial	Theory Practical Tutorial Total				
-	04	-		02	-	02	

Theory					Term Work / Practical/Oral		Total
Internal Assessment			End	Duration of End Sem			
Test-I	Test-II	Average	Sem Exam	Exam	TW	Oral	
-	-	-	-		50	50	100

Students will able to

- 1 Understand analyze properties of MSW
- 2 Understand vermicomposting on a lab scale.
- 3 Understand aerobic and anaerobic digesting of solid waste.
- 4 Will know of incineration process and handling of HSW.
- 5 Understand ecology baseline and impact of waste on environment.
- 6 Understand process of project report preparation based on case studies.

List of Experiments (minimum eight)

Waste Technology based experiments should be conducted.

- 1. Determination of pH of MSW
- 2. Determination of Total Solids, fixed solids and volatile solids
- 3. Determination of nutrient value (NPK)
- 4. Lab scale study on vermicomposting
- 5. Lab scale study of aerobic and anaerobic digesting of solid wastes (Both industrial & Municipal)
- 6. A Visit to the Hazardous waste Generation or disposal site.
- 7. Practical knowledge and working of incinerators
- 8. Visit to Industrial area, especially the handling of Hazardous materials
- 9. Ecology baseline and impact of waste disposal on vegetation

10. Preparation of Project report based on a case study of one hospital Study of the source, generation rates and characteristics of hazardous wastes and their regulation, handling, treatment, and disposal. Special emphasis is placed on process design of waste handling, treatment and disposal systems.

Course Outcomes:

At the end of the course the student will be able to:

- 1 Learn to analyze properties of MSW.
- 2 To study vermicomposting on a lab scale.
- 3 To carry out aerobic and anaerobic digesting of solid waste.
- 4 To acquire knowledge of incineration process and handling of HSW.
- 5 Learn to analyze ecology baseline and impact of waste.
- 6 Learn about project report preparation based on case studies.

Term work (25 marks)

Term work should be evaluated based on performance in practical/Assignments.

Practical Journal/Assignments: 45 marks
Attendance: 05 marks
Total: 50 marks

End Semester Oral Examination (50 marks)

• A student will become eligible for Oral examination after completing 8 out of 10 experiments/Assignments